Articles

Algoritmische discriminatie

Algoritmische discriminatie

Algoritmische discriminatie

08.01.2019 NL law

'Slimme algoritmes' nemen steeds meer arbeidsrechtelijk relevante beslissingen. Zo kunnen zelflerende systemen onder meer worden ingezet om te bepalen wie promotie krijgt of welk cv wordt geselecteerd in een sollicitatieprocedure. Ook in de opkomende platformeconomie worden veel arbeidsrechtelijk relevante beslissingen genomen door geautomatiseerde systemen: wie doet welke klus en tegen welke beloning?

Het is de vraag of dit soort beslissingen ook eerlijk(er) zijn wanneer zij geautomatiseerd zijn. Zelflerende algoritmes kunnen namelijk tot niet objectief te rechtvaardigen resultaten komen, zowel doordat het algoritme de vooroordelen van de programmeurs of hun opdrachtgevers weerspiegelt, als doordat het is getraind met historische oefendata die is voortgekomen uit een ongelijke historische situatie. In deze 'Ter Visie' verken ik twee arbeidsrechtelijk relevante, hiermee samenhangende, eigenaardigheden van zelflerende systemen.

De eerste eigenaardigheid is dat zulke systemen beslissingen nemen op basis van zeer grote hoeveelheden data, factoren en daarmee blootstaan aan veel potentiële claims uit hoofde van indirecte discriminatie. Een systeem dat onderscheid maakt op basis van de ogenschijnlijk neutrale maatstaf 'postcode' kan zo bijvoorbeeld ook onderscheid maken op basis van etniciteit, omdat het nu eenmaal vaak voorkomt dat mensen van een bepaalde etniciteit of sociale klasse bij elkaar in dezelfde wijk wonen.

De tweede eigenaardigheid is dat zelflerende systemen vaak een zogeheten 'black box' zijn. Dat hangt deels samen  met het feit dat zulke systemen bedrijfsgeheim zijn. Het kan echter ook gaan om een eigenschap die inherent is aan het type systeem dat wordt gebruikt: van de meeste zelflerende systemen kan achteraf maar moeilijk worden gereconstrueerd waarom zij een bepaalde beslissing namen. Dat leidt tot verschillende problemen op het gebied van zowel materieel gelijkebehandelingsrecht als bewijsrecht.

Een voorbeeld van een probleem op het gebied van materieel gelijkebehandelingsrecht is het volgende: volgens jurisprudentie van het Europees Hof van Justitie zal van een beloningssysteem dat ondoorzichtig is eerder worden vermoed dat het discriminatoir is.

Een bewijsrechtelijk probleem zou kunnen voortvloeien uit het feit dat de bewijslast verschuift naar de werkgever zodra de werknemer het vermoeden van discriminatie heeft gevestigd. De werkgever moet dan bewijzen dat hij niet heeft gediscrimineerd. Een werkgever zal echter moeilijk in dit bewijs kunnen slagen, als hij een systeem hanteert dat kan worden omschreven als black box.

Het beste dat een werkgever die een black box gebruikt kan doen, is uitleggen hoe het systeem is ontworpen – bij voorkeur onder verwijzing naar maatregelen die zijn getroffen om zo min mogelijk discriminatoire effecten te hebben. Gelet hierop doen werkgevers die gebruik willen maken van zelflerende systemen er goed aan het ontwerpproces van hun zelflerende systeem goed te documenteren. Welke ontwerpbeslissingen worden er gemaakt, en waarom?

Related news

02.07.2019 NL law
Debate night: HR Analytics: opportunity or threat?

Seminar - On 2 July 2019, Stibbe's Digital Economy Group will host a debate night in Amsterdam on the hot topic of HR analytics. During Stibbe's debate night, speakers from the world of business, politics, science and law will exchange views on HR analytics, how they can be used in practice, and their development in the context of employment and privacy law.

Read more

27.06.2019 NL law
Stibbe launches website about Digital Economy

Inside Stibbe - Stibbe's Digital Economy group published a new website this week: Stibbedigital.com With this new website we aim to view technological developments including artificial intelligence (AI), blockchain, the Internet of Things, smart mobility and the rise of digital platforms from a legal perspective.

Read more

03.07.2019 NL law
Bezoldigingsbeleid en bezoldigingsverslag onder het Wetsvoorstel Implementatie herziene aandeelhoudersrechtenrichtlijn

Short Reads - Op 2 april 2019 heeft de Tweede Kamer het wetsvoorstel Implementatie herziene aandeelhoudersrechtenrichtlijn, samen met enkele Amendementen rondom het bezoldigingsbeleid en het bezoldigingsverslag, aangenomen. Er bleken enkele onduidelijkheden te zijn in de praktische uitwerking van enkele Amendementen. Na vragen door de Eerste Kamercommissie heeft de minister daarop geantwoord in de op 27 juni 2019 verschenen Memorie van antwoord. In dit bericht behandelen wij de Amendementen, de gerezen onduidelijkheden daarbij en de antwoorden van de minister.

Read more

Our website uses functional cookies for the functioning of the website and analytic cookies that enable us to generate aggregated visitor data. We also use other cookies, such as third party tracking cookies - please indicate whether you agree to the use of these other cookies:

Privacy – en cookieverklaring